Problem Sheet 6

Problem 1

Let K / \mathbb{Q} be a quadratic extension of discriminant D. For $\mathfrak{a} \subseteq K$ a fractional ideal, set

$$
Q_{\mathfrak{a}}: \mathfrak{a} \longrightarrow \mathbb{Z}, a \longmapsto \frac{N_{K / \mathbb{Q}}(a)}{N_{K / \mathbb{Q}}(\mathfrak{a})}
$$

(a) Show that $Q_{\mathfrak{a}}(a)=n$ has a solution if and only if there is an ideal $\mathfrak{b} \subseteq \mathcal{O}_{K}$ in the ideal class of \mathfrak{a}^{-1} such that $N_{K / \mathbb{Q}}(\mathfrak{b})=n$.
(b) Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ be representatives for the elements of the class group $C l_{K}$. Prove that, for $p \nmid D$,

$$
p \text { split in } K \Leftrightarrow \exists i, a \in \mathfrak{a}_{i} \text { s.th. } Q_{\mathfrak{a}_{i}}(a)=p
$$

(c) Conclude that, for $p \neq 2,5$,

$$
\left\{\begin{array}{lll}
X^{2}+5 Y^{2}=p & \text { has a solution } \Leftrightarrow p \equiv 1,9 & \bmod 20 \\
2 X^{2}+2 X Y+3 Y^{2}=p & \text { has a solution } \Leftrightarrow p \equiv 3,7 & \bmod 20
\end{array}\right.
$$

Problem 2

Find the class number $h_{\mathbb{Q}(\sqrt{m})}$ for $m=5,6,-7,-13$ and -23 .

Problem 3

Let $K=\mathbb{Q}(\sqrt[3]{m})$ with m square-free and $m \not \equiv \pm 1 \bmod 9$.
(a) Show that $\mathbb{Z}[\sqrt[3]{m}]$ is the ring of integers in K.
(b) Compute the class number of K for $m=3,5$.

Problem 4

Let $K_{1}, K_{2} / \mathbb{Q}$ be quadratic fields with discriminants $D_{1} \neq D_{2}$. Describe (with proof) the decomposition behavior of primes in the composite field $K:=K_{1} K_{2}$ in terms of D_{1} and D_{2}.
Hint: You may freely use that every quadratic extension of \mathbb{Q} embeds into a cyclotomic extension. This is especially useful for the study of the decomposition behavior of $p=2$.

